

DOI: 10.1002/alz.082991

BIOMARKERS

POSTER PRESENTATION

Alzheimer's & Dementia® THE JOURNAL OF THE ALZHEIMER'S ASSOCIATION

NEUROIMAGING

A Volume-Based Alternative for classifying ATN: Data from the Tau Propagation over Time (T-POT) cohort

Elena Doering^{1,2} | Merle C. Hönig^{2,3} | Verena Dzialas² | Julia Lothmann² | Kathrin Giehl 2,3 | Hendrik Theis 2,4 | Elena Jäger 2 | Gregory Andrassy 2 | Andreas Bauer³ David Elmenhorst³ Tina Kroll³ Andreas Matusch³ Philip Krapf⁵ | Bernd Neumaier^{2,5} | Christoph Lerche⁶ | Lutz Tellmann⁶ | Silke Frensch⁶ | Philip Zeyen⁷ | Frederik Sand⁷ | Nils Richter^{4,8} | Frank Jessen^{1,7} | Oezguer A. Onur⁷ | Alfredo Ramirez^{7,9} | Thilo van Eimeren^{2,4} | Alexander Drzezga^{1,2,3} Gerard N Bischof^{2,3}

Correspondence

ElenaDoering, German Center for Neurodegenerative Diseases (DZNE), Bonn Germany.

Email: elena.doering@uk-koeln.de

Abstract

Background: Alzheimer's disease (AD) is characterized by the cerebral accumulation of amyloid-beta (A), tau (T), and progressive neurodegeneration (N). The widely used ATN system, with regard to positron emission tomography (PET) biomarkers, categorizes AD based on the mean signal in specific regions of interest (ROI). However, this procedure disregards the spatial extent of pathology and neurodegeneration. Here, we propose an alternative quantification of the volume, i.e., fill states, of A, T and N in (pre)-clinical AD.

Method: We analyzed data from the Tau Propagation over Time (T-POT) study, including cognitively unimpaired individuals (CU, n = 58), and patients with mild cognitive impairment (MCI, n = 20) or AD dementia (n = 4). C11-PIB-PET (A), 18F-AV1451 (T) and perfusion-phase 18F-AV1451 scans (N) were spatially and intensity-normalized (reference: cerebellum). To quantify the volume of A, T and N, we z-standardized and subsequently binarized all scans within-modality using a z-score threshold. Fill states were then computed as the sum of abnormal voxels relative to a whole-brain mask. Finally, mean fill states were compared across groups of clinical status (CU, MCI, AD) and partial correlations of either fill states or mean PET signal in established, tracerspecific ROIs with cognitive performance (MMSE) were computed, adjusting for age, sex and education.

Result: Mean fill states reflected clinical status, as they increased with disease progression (CU: A = 4%, T = 4%, N = 3%; MCI: A = 15%, T = 11%, N = 4%; AD dementia: A = 20%, T = 23%, N = 5%). Moreover, A and T fill states were negatively associated with MMSE ($rho_A = -.299$, p < .001; $rho_T = -.318$, p < .01; $rho_N = -.147$, p = .20), while associ-

¹German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany

²University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Nuclear Medicine, Cologne, Germany

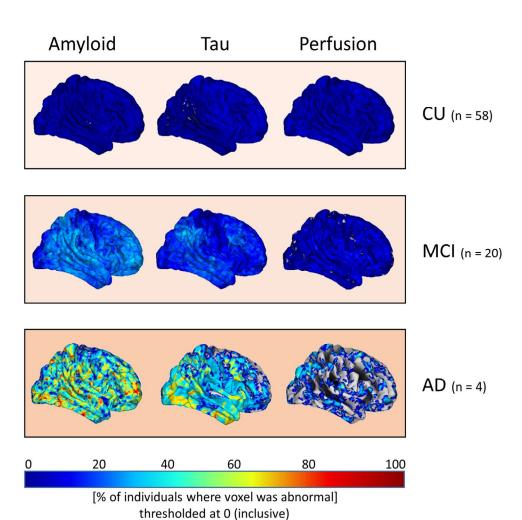
³Research Center Jülich, Institute for Neuroscience and Medicine - Molecular Organization of the Brain (INM-2), Jülich, Germany

⁴University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, Cologne, Germany

⁵Research Center Jülich, Institute for Neuroscience and Medicine - Nuclear Chemistry (INM-5), Jülich, Germany

⁶Research Center Jülich, Institute for Neuroscience and Medicine - Medical Imaging Physics (INM-4), Jülich, Germany

⁷University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Psychiatry, Cologne, Germany


⁸Research Center Jülich, Institute of Neuroscience and Medicine - Cognitive Neuroscience (INM-3), Jülich, Germany

⁹University of Bonn, Bonn, Germany

1553279, 2023, S24, Downloaded from https://alz-journals.onlinelibrary.wiley.com/doi/10.1002/alz.082991 by Forschungszentrum Jülich GmbH Research Center, Wiley Online Library on [11/04/2024]. See the Terms and Conditions (https://onlinelibrary.wiley.

ations of mean PET signal and MMSE tended to be weaker (rho_A(global) = -.255, p = .03; $rho_{T(temporalmetaROI)} = -.275, p = .01; \\ rho_{N(metaROI)} = .179, p = .12).$

Conclusion: We present a competitive quantification scheme for ATN that is associated with both, clinical status and cognitive performance. These results, while currently validated in a larger sample, suggest that the spatiotemporal dynamics of pathology and neurodegeneration in the AD continuum are well captured by our multiparametric approach, which is possibly superior compared to classification from mean PET signal intensity.

